CHAPTER 14 Solutions

The Dissolution Process

- **1.** Effect of Temperature on Solubility
- 2. Molality and Mole Fraction

Colligative Properties of Solutions

- 3. Lowering of Vapor Pressure and Raoult's Law
- 4. Fractional Distillation
- 5. Boiling Point Elevation
- 6 Freezing Point Depression
- 7. Determination of Molecular Weight by Freezing Point Depression or Boiling Point Elevation
- 8. Colligative Properties and Dissociation of Electrolytes
- 9. Osmotic Pressure

Effect of Temperature on Solubility

LeChatelier's Principle When stress is applied to a system at equilibrium, the system responds in a way that best relieves the stress.

Molality and Mole Fraction

 Molality is a concentration unit based on the number of moles of solute per kilogram of solvent.

 $m = \frac{\text{moles of solute}}{\text{kg of solvent}}$

in dilute <u>aqueous</u> solutions molarity and molality are nearly equal

Molality and Mole Fraction

 Mole fraction is the number of moles of one component divided by the moles of all the components of the solution

 $X_{A} = \frac{\text{number of moles of A}}{\text{number of moles of A} + \text{number of moles of B}}$

number of moles of B

= number of moles of A + number of moles of B Note that $X_A + X_B = 1$

The sum of all the mole fractions must equal 1.00.

Colligative Properties of Solutions

- Colligative properties are properties of solutions that depend solely on the <u>number of particles</u> dissolved in the solution.
 - Colligative properties do not depend on the kinds of particles dissolved.
- Colligative properties are a physical property of solutions.

Colligative Properties of Solutions

There are four common types of colligative properties:
1. Vapor pressure lowering
2. Freezing point depression
3. Boiling point elevation
4. Osmotic pressure

- Addition of a <u>nonvolatile</u> solute to a solution lowers the vapor pressure of the solution.
 - The effect is simply due to fewer solvent molecules at the solution's surface.
 - The solute molecules occupy some of the spaces that would normally be occupied by solvent.
- Raoult's Law models this effect in <u>ideal</u> solutions.

Derivation of Raoult's Law.

 $P_{\text{solvent}} = X_{\text{solvent}} P_{\text{solvent}}^{0}$ where $P_{\text{solvent}} = \text{vapor pressure of solvent in solution}$ $P_{\text{solvent}}^{0} = \text{vapor pressure of pure solvent}$ $X_{\text{solvent}} = \text{mole fraction of solvent in solution}$

 Lowering of vapor pressure, ∆P_{solvent}, is defined as:

$$\Delta P_{\text{solvent}} = P_{\text{solvent}}^{0} - P_{\text{solvent}}$$
$$= P_{\text{solvent}}^{0} - (X_{\text{solvent}})(P_{\text{solvent}}^{0})$$
$$= (1 - X_{\text{solvent}})P_{\text{solvent}}^{0}$$

- Remember that the sum of the mole fractions must equal 1.
- Thus $X_{\text{solvent}} + X_{\text{solute}} = 1$, which we can substitute into our expression.

$$X_{\text{solute}} = 1 - X_{\text{solvent}}$$
$$\Delta P_{\text{solvent}} = X_{\text{solute}} P_{\text{solvent}}^{0}$$
$$\text{which is Raoult's Law}$$

Fractional Distillation

- Distillation is a technique used to separate solutions that have two or more volatile components with differing boiling points.
- A <u>simple</u> distillation has a single distilling column.
 - Simple distillations give reasonable separations.
- A *fractional* distillation gives increased separations because of the increased surface area.
 - Commonly, glass beads or steel wool are inserted into the distilling column.

Boiling Point Elevation

 Addition of a nonvolatile solute to a solution raises the boiling point of the solution above that of the pure solvent.

This effect is because the solution's vapor pressure is lowered as described by Raoult's law.

Boiling Point Elevation

- Boiling point elevation relationship is:
 - $\Delta T_{b} = K_{b}m$ where : ΔT_{b} = boiling point elevation m = molal concentration of solution $K_{b} = \text{molal boiling point elevation constant}$ for the solvent

Boiling Point Elevation

• What is the normal boiling point of a 2.50 *m* glucose, $C_6H_{12}O_6$, solution?

 $\Delta T_{b} = K_{b}m$ $\Delta T_{b} = (0.512 \ ^{0}C/m)(2.50m)$ $\Delta T_{b} = 1.28^{0}C$

Boiling Point of the solution $= 100.0^{\circ} \text{C} + 1.28^{\circ} \text{C} = 101.28^{\circ} \text{C}$

 Addition of a nonvolatile solute to a solution lowers the freezing point of the solution relative to the pure solvent.

 Relationship for freezing point depression is:

 $\Delta T_{f} = K_{f}m$ where: ΔT_{f} = freezing point depression of solvent m = molal concentration of soltuion K_{f} = freezing point depression constant for solvent

 Notice the similarity of the two relationships for freezing point depression and boiling point elevation.

$\Delta T_{f} = K_{f} m \text{ vs.} \Delta T_{b} = K_{b} m$

- Fundamentally, freezing point depression and boiling point elevation are the same phenomenon.
 - The only differences are the size of the effect which is reflected in the sizes of the constants,
 K_f & K_b.

 Calculate the freezing point of a 2.50 m aqueous glucose solution.

> $\Delta T_{f} = K_{f} m$ $\Delta T_{f} = (1.86^{\circ} C/m)(2.50m)$ $\Delta T_{f} = 4.65^{\circ} C$

Freezing Point of solution = 0.00° C - 4.65° C = - 4.65° C

Determination of Molecular Weight by Freezing Point Depression

The size of the freezing point depression depends on two things: 1. The size of the K_f for a given solvent, which are well known. 2.And the molal concentration of the solution which depends on the number of moles of solute and the kg of solvent.

 A 37.0 g sample of a new covalent compound, a nonelectrolyte, was dissolved in 2.00 x 10² g of water. The resulting solution froze at -5.58°C. What is the molecular weight of the compound?

 $\Delta T_{f} = K_{f} m$ thus the $m = \frac{\Delta T_{\rm f}}{K_{\rm f}} = \frac{5.58^{\,0}\,{\rm C}}{1.86^{\,0}\,{\rm C}} = 3.00m$ In this problem there are 200 mL = 0.200 kg of water.? mol compound in 0.200 kg H₂O = $3.00 \ m \times 0.200$ kg = 0.600 mol compound

Thus the molar mass is $\frac{37 \text{ g}}{0.600 \text{ mol}} = 61.7 \text{ g/mol}$

Colligative Properties and Dissociation of Electrolytes

- Electrolytes have larger effects on boiling point elevation and freezing point depression than nonelectrolytes.
 - This is because the number of particles released in solution is greater for electrolytes
- One mole of NaCl dissolves in water to produce two moles of aqueous ions:
 - -1 mole of Na⁺ and 1 mole of Cl⁻ ions

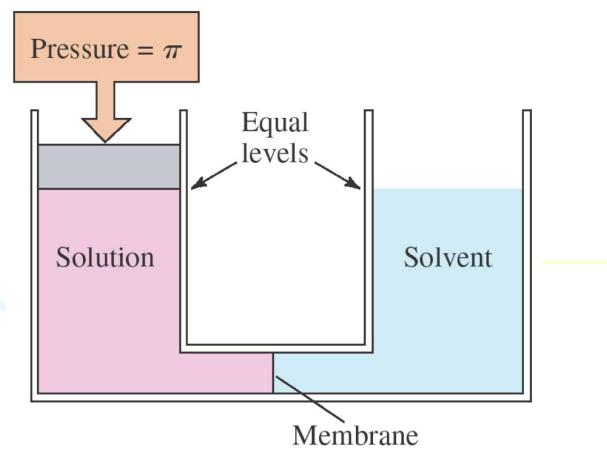
Colligative Properties and Dissociation of Electrolytes

- The van't Hoff factor, symbol *i*, is used to introduce this effect into the calculations.
- *i* is a measure of the extent of ionization or dissociation of the electrolyte in the solution.

 $\Delta \Gamma_{f(actual)}$

Colligative Properties and Dissociation of Electrolytes

 i has an ideal value of 2 for 1:1 electrolytes like NaCl, KI, LiBr, etc.


 $Na^+Cl^- \xrightarrow{H_2O} Na^+_{(aq)} + Cl^-_{(aq)} 2 ions/formula unit$

- *i* has an ideal value of 3 for 2:1
 electrolytes like K₂SO₄, CaCl₂, SrI₂, etc.
 - $Ca^{2+}Cl_2^- \xrightarrow{H_2O} Ca^{2+}_{(aq)} + 2Cl_{(aq)}^- 3 ions/formula unit$

Osmotic Pressure

- Osmosis is the net flow of a solvent
 between two solutions separated by
 a semipermeable membrane.
 - The solvent passes from the lower concentration solution into the higher concentration solution.
 - Examples of semipermeable membranes include:
 - cellophane and saran wrap
 skin
 cell membranes

Osmotic Pressure

Osmotic Pressure $\pi = MRT$ where: $\pi = \text{osmotic pressure in atm}$ M = molar concentration of solution $R = 0.0821 \frac{L \text{ atm}}{\text{mol K}}$ T = absolute temperature

For very dilute aqueous solutions, molarity and molality are nearly equal. • $M \approx m$

 $\pi = m R T$

for dilute aqueous solutions only

Osmotic pressure measurements can be used to determine the molar masses of very large molecules such as: Polymers, proteins and ribonucleotides

